Refractory For Smelting Ferrosilicon Furnace

Dec. 15, 2025

Refractory For Smelting Ferrosilicon Furnace


Ferrosilicon furnace, a type of submerged arc furnace, are typical high-power-consuming industrial electric furnaces. They are primarily used for smelting ferrosilicon, ferromanganese, ferrochrome, ferrotungsten, and ferrosilicon-manganese alloys, employing a continuous feeding and intermittent tapping and slag removal operation, classifying them as continuous production equipment.


Ferrosilicon smelting furnaces have complex structures, generally including a furnace shell, furnace cover, furnace lining, short mesh, water cooling system, flue gas and dust removal system, electrode system (electrode shell, pressing and lifting devices), loading and unloading system, handles, burn-through device, hydraulic system, transformer, and other electrical equipment. Due to the extremely high temperatures, thermal shock, chemical erosion, and mechanical scouring during the smelting process, the selection and configuration of refractory materials are extremely demanding.


Proper selection of refractory materials can not only effectively extend the furnace lining life and improve operating efficiency, but also significantly reduce energy consumption and production costs, and reduce solid waste emissions caused by frequent maintenance.


The following systematically describes the selection scheme of refractory materials based on the actual operating conditions and temperature distribution of various zones within a ferrosilicon smelting furnaces. All temperature ranges and material recommendations are based on common industry smelting practices and refractory material performance data.


Refractory For Smelting Ferrosilicon Furnace


1. Preheating Zone (Upper Burden)

This zone is located approximately 500mm thick at the top of the furnace charge, with a temperature of approximately 500–1000℃. This area is mainly affected by high-temperature exhaust gases, electrode conduction heat, and combustion heat from the charge surface. The temperature is relatively low but fluctuates frequently. Clay bricks with good thermal shock stability and low cost are generally selected as the lining.


2. Preheating Zone (Burn Charge Drying and Crystal Transformation Zone)

After the furnace charge falls into this zone, the moisture evaporates completely, and silica undergoes a crystal transformation (such as the transformation from α-quartz to β-quartz), accompanied by volume expansion, which easily leads to cracking or bursting. The temperature in this zone is approximately 1300℃. It is recommended to use high-alumina bricks (Al₂O₃ content ≥55%) with high refractoriness and thermal shock resistance for construction.


3. Sintering Zone (Crust Shell Formation Zone)

The temperature is between 1500–1700℃. Here, the furnace charge softens and sinters, forming initial liquid silicon and iron beads that drip into the molten pool. This zone has poor permeability, requiring timely breaking up of clumps to improve ventilation and increase electrical resistance. Due to the high temperature and strong erosive effect of the initial slag, semi-graphite carbon-silicon carbide bricks (containing 30–50% SiC) with excellent impermeability and high-temperature strength are recommended.


4. Reduction Zone (Main Reaction Zone)

Located in the lower middle part of the crucible zone, the temperature reaches 1750–2000℃. This is the area of intense chemical reactions such as SiC decomposition, ferrosilicon formation, and the reaction of SiO₂ with C and Si. Erosion and scouring are extremely severe. In ferrosilicon furnace, semi-graphite calcined carbon bricks with stable high-temperature performance and strong resistance to metal and slag penetration must be used in this area.


5. Arc Zone (High-Temperature Cavity Below Electrode)

This zone is the hottest point in the submerged arc furnace, reaching over 2000℃, and is the main heat source area of the furnace. The electrode insertion depth directly affects the position of the high-temperature zone; 

Generally, the bottom of the electrode should be 400-500mm away from the furnace bottom. Too shallow a distance can cause the high-temperature zone to shift upwards, the furnace bottom temperature to be too low, and slag discharge to be obstructed, forming a "false furnace bottom." While a false furnace bottom provides some protection, it will cause the taphole to shift upwards, affecting normal operation.

Semi-graphite calcined carbon bricks are also recommended for this area to ensure structural stability under extremely high temperatures and arc radiation.


6. Permanent Layer

Located between the working lining and the furnace shell, this layer mainly serves to insulate and protect the furnace shell. It is often constructed using phosphate-bonded refractory castables or clay bricks.


7. Furnace Door Area

This area experiences frequent opening and closing, as well as erosion from high-temperature airflow, resulting in drastic temperature fluctuations. It is recommended to use high-strength, wear-resistant corundum castable for monolithic casting, or to use precast silicon carbide bricks for lining to ensure erosion resistance and structural integrity.


The selection of refractory for smelting furnaces requires a comprehensive consideration of factors such as furnace volume, operating temperatures of various parts, type of chemical erosion, thermomechanical stress, and environmental requirements, scientifically matching different types of refractory bricks and castables.


Optimizing the lining configuration not only improves the lifespan of the submerged arc furnace & other smelting ferrosilicon furnace lining and smelting efficiency but also has significant practical implications for achieving energy conservation, emission reduction, and cleaner production.

Latest Products

Customized metallurgical machinery and equipment range: Electric Arc Furnace, Submerged Arc Furnace, LF Refining Furnace, Vacuum Furnace, Induction Furnace, Dust Remove System, Water Treatment Equipment, etc. Providing the most advanced equipment integration services, metallurgical equipment can be customized according to different needs of customers, and production capacity can be adjusted according to customer requirements.

Electric Arc Furnace

Submerged Arc Furnace

LF Refining Furnace

VD / VOD Vacuum Refining Furnace

Induction Furnace

Furnace Accessories

5 Ton Electric Arc Furnace

5 Ton Electric Arc Furnace

The 5 ton electric arc furnace for steel-making is a special purpose equipment that makes ordinary steel, quality carbon steel, alloy steel and non-corrosive steel with electric arc as heat source and scrap steel (iron) as raw material.

15 Ton Electric Arc Furnace

15 Ton Electric Arc Furnace

15-ton electric arc furnace is used for the short-process steelmaking process, using 100% scrap steel or scrap steel + molten iron (pig iron), or scrap steel + sponge iron (DRI) as raw materials for steelmaking.

30 Ton AC Electric Arc Furnace

30 Ton AC Electric Arc Furnace

The 30-ton AC electric arc furnace is used to melt scrap steel to produce steel. Electrical energy is used to melt scrap steel. An arc forms between the charged material and the electrode.

30 Ton Electric Arc Furnace

30 Ton Electric Arc Furnace

30 Ton electric arc furnace is used for steelmaking short process smelting, using 100% scrap steel or scrap steel + molten iron (pig iron), or scrap steel + sponge iron (DRI) as raw materials for steelmaking.

50 Ton Ultra-high Power Electric Arc Furnace

50 Ton Ultra-high Power Electric Arc Furnace

The 50-ton ultra-high power electric arc furnace (50TUPH EAF) adopts ultra-high power, high impedance technology, bottom tapping technology (ETB), furnace wall oxygen oil burner and furnace door carbon-oxygen gun technology.

DC Electric Arc Furnace

DC Electric Arc Furnace

DC electric arc furnace is an electric arc furnace supplying electric energy with DC power supply. There is only one electrode on the top of the DC arc furnace, which is the negative electrode, and the bottom electrode is the positive electrode.

Electric Arc Furnace

Electric Arc Furnace

Electric arc furnaces are used to melt scrap steel for steel production. Electrical energy is used to melt scrap steel. An arc forms between the charged material and the electrode. The heat generated by the arc melts the scrap.

Electric Arc Furnace Steel Making

Electric Arc Furnace Steel Making

Electric arc furnace steel making is a steelmaking method that uses the thermal effect of electric arc to heat the charge for melting.

Ultra-high Power Electric Arc Furnace

Ultra-high Power Electric Arc Furnace

Ultra-high power electric arc furnace mainly changes the arc characteristics of high voltage and long arc to the arc characteristics of high current, low voltage and short arc

1 Ton Electric Arc Furnace

1 Ton Electric Arc Furnace

1 ton electric arc furnace is used for melting steel and titanium scrap metal. The principle of electric arc furnace is based on the generation of direct current, which converts electrical energy into heat energy through electrodes to melt the metal.

2×36000KVA Closed Pig Iron Submerged Arc Furnace

2×36000KVA Closed Pig Iron Submerged Arc Furnace

The closed pig iron furnace (submerged arc furnace iron making) is a non-blast furnace iron making method. Under the premise of guaranteeing the power supply, it is easy to solve the problem by using the reducing agent required by the submerged arc furnace iron making.

Ferroalloy Refining Furnace

Ferroalloy Refining Furnace

The main mechanical device design of Sanui ferroalloy refining furnace combines China's national conditions and draws on international advanced technologies such as Demark and Pyremate.

25.5MVA Ferronickel Submerged Arc Furnace

25.5MVA Ferronickel Submerged Arc Furnace

The Ferronickel submerged arc furnace is a special submerged arc furnace used for smelting nickel-iron alloy. Its main function is to add nickel ore, carbonaceous reducing agent (such as coke) and limestone and other raw materials into the furnace in a certain proportion

Ferrosilicon Furnace

Ferrosilicon Furnace

The main mechanical device design of Sanui ferrosilicon furnace combines China's national conditions and draws on international advanced technologies such as Demark and Pyremate.

High Carbon Ferrochrome Furnace

High Carbon Ferrochrome Furnace

The main mechanical device design of Sanui high carbon ferrochrome furnace combines China's national conditions and draws on international advanced technologies such as Demark and Pyremate.

25500KVA Industrial Silicon Submerged Arc Melting Furnace

25500KVA Industrial Silicon Submerged Arc Melting Furnace

Industrial silicon submerged arc furnace is an important equipment in silicon ore processing, playing a key role in the silicon industry.

Manganese Silicon Alloy Furnace

Manganese Silicon Alloy Furnace

The manganese silicon alloy furnace is mainly used to smelt silicon-manganese alloy, which is an alloy containing silicon and manganese.

Submerged Arc Furnace

Submerged Arc Furnace

The design of the submerged arc furnace main mechanical device by Sanui is based on China's national conditions and draws on international advanced technologies such as Demark and Perlmutter.

Submerged Electric Arc Furnace

Submerged Electric Arc Furnace

Submerged electric arc furnace is mainly used for reducing and smelting raw materials such as ore, carbonaceous reducing agent and solvent. It mainly produces ferroalloys such as ferrosilicon, ferromanganese, ferrochrome, ferrotungsten, silicon-manganese alloy, etc.

Titanium Slag Furnace

Titanium Slag Furnace

Titanium slag production adopts titanium slag electric furnace (circular furnace and rectangular furnace according to its shape) smelting process.

LF 20T Ladle Refining Furnace

LF 20T Ladle Refining Furnace

The LF 20 T ladle refining furnace has the functions of arc heating under normal pressure, argon blowing and stirring at the bottom of the ladle, and reducing slag making in the ladle.

LF Ladle Refining Furnace

LF Ladle Refining Furnace

LF ladle refining furnace is a bottom-blown argon ladle furnace with three-phase submerged arc heating under normal pressure. It is a device for refining molten steel in a ladle.

VD Vacuum Refining Furnace

VD Vacuum Refining Furnace

VD vacuum refining furnace is a commonly used refining process equipment, mainly used for deoxidation, impurity removal and other operations of molten steel, so as to obtain high purity, low impurity content of high quality steel.

VOD Vacuum Refining Furnace

VOD Vacuum Refining Furnace

VOD vacuum refining furnace has multiple functions such as vacuum degassing, oxygen blowing decarburization, vacuum charging, argon blowing stirring, non-vacuum temperature measurement sampling, wire feeding, etc.

Cast Steel Melting Induction Furnace

Cast Steel Melting Induction Furnace

The cast steel melting induction furnace has outstanding advantages in heat penetration or melting soft magnetic alloys, high resistance alloys, platinum group alloys, heat-resistant, corrosion-resistant, wear-resistant alloys and pure metals.

Metal Silicon Smelting Furnace

Metal Silicon Smelting Furnace

Metal silicon smelting furnace is a metal silicon medium frequency melting furnace, which consists of furnace body, water and electricity introduction system, furnace tilting device, etc. It has fast melting temperature rise, easy to control furnace temperature and high production efficiency.

Medium Frequency Induction Furnace

Medium Frequency Induction Furnace

Medium frequency induction furnace mainly used for melting steel, alloy steel, special steel, stainless steel, and can also be used for melting and casting non-ferrous metals such as copper, aluminum, lead, zinc, etc. The customized range of induction furnaces sold by Sanrui ranges from 0.1 tons to 10 tons.

Medium Frequency Furnace

Medium Frequency Furnace

Medium frequency induction furnaces are mainly used for melting steel, alloy steel, special steel, stainless steel, and can also be used for melting and casting non-ferrous metals such as copper, aluminum, lead, and zinc.

Medium Frequency Aluminum Melting Furnace

Medium Frequency Aluminum Melting Furnace

Medium frequency aluminum melting furnace is used for melting and heating aluminum, scrap aluminum, aluminum ingots, and aluminum alloys; The melting capacity ranges from 100KG to 3000KG.

Induction Furnace

Induction Furnace

An induction furnace is an electric furnace that uses the induction electrothermal effect of the material to heat or melt the material. The main components of an induction furnace are sensors, furnace body, power supply, capacitors and control system.

3 Tons Medium Frequency Coreless Induction Furnace

3 Tons Medium Frequency Coreless Induction Furnace

​The 3-ton medium frequency coreless induction furnace adopts a 6-phase 12-pulse double rectifier control system. A 2000KVA special rectifier transformer is used for the 2000KW medium frequency power supply.

Conductive Cross Arm

Conductive Cross Arm

The conductive arm of an electric arc furnace (EAF) is primarily composed of the front electrode conductive arm holder, a water-cooled clamping ring, the arm body, and the rear conductive copper plate.

EAF Charging Basket

EAF Charging Basket

The scrap charging basket of the electric arc furnace is mainly used for loading and conveying raw materials such as scrap steel into the electric arc furnace for smelting.

EAF Electrode Holder

EAF Electrode Holder

There are many insulation links between the EAF electrode holder and the conductive cross arm body, which greatly simplifies the cconductive cross arm structure and is a new type of electrode arm on the ultra-high power arc furnace.

EAF Water Cooled Roof

EAF Water Cooled Roof

Generally, the furnace cover of the electric arc furnace adopts the tubular water-cooled closed tube furnace cover structure.

Electrode Lifting Device

Electrode Lifting Device

The electrode lifting mechanism of electric arc furnace is composed of conductive cross arm and electrode column device.

Forged Copper Tile

Forged Copper Tile

Forged copper tile is one of the main accessories in submerged arc furnace (silicon metal furnace, calcium carbide furnace and iron alloy furnace). It generates heat energy due to passing through large current at high temperature, and is easy to be damaged due to poor working environment.

Furnace Cover Lifting and Rotating Device

Furnace Cover Lifting and Rotating Device

The furnace cover lifting and rotating device consists of a furnace cover lifting mechanism, a rotating mechanism and a rotating frame.

Submerged Arc Furnace Pressure Ring

Submerged Arc Furnace Pressure Ring

Submerged arc furnace pressure ring is used to monitor the change of air pressure in the furnace in real time, and adjust the air pressure automatically or manually according to the preset parameters to ensure the stability of air pressure in the furnace

Submerged Arc Furnace Water-cooled Roof

Submerged Arc Furnace Water-cooled Roof

Submerged arc furnace water-cooled Roof is an important part of submerged arc furnace (also known as electric arc furnace, calcium carbide furnace or mining furnace), which is mainly used to close the top of furnace body and bear the high temperature and pressure in the furnace.

Short Network

Short Network

Short network bus systems), also known as high current line, refers to the general term of the carrier fluid from the secondary outlet terminal of the transformer to the electrode (including the electrode).

Contact Us

E-mail: anna@srfurnace.com

Tel: +86 159 2955 5868

WhatsApp: +86 159 2955 5868

Add:
Room 422, 4th Floor, Building D, No. 5, Phase I, Fengdong Free Trade Industrial Park, Xixian New District, Shaanxi Province

Get In Touch

Copyright © Xi'an Sanrui Electric Furnace Co., Ltd. All Rights Reserved | Sitemap | Powered by Reanod