The Difference Between Direct and Indirect Electric Arc Furnace

Nov. 07, 2025

The Difference Between Direct and Indirect Electric Arc Furnace


Electric arc furnaces can be divided into three categories: 

  • Direct heating: The electric arc occurs between the electrode rods and the furnace, directly heating the furnace. This is primarily used for steelmaking, but also for ironmaking, copper production, refractory materials, and molten steel.

  • Indirect heating: The electric arc occurs between two electrode rods, radiating heat from the arc. This is used for smelting copper and copper alloys.


Differences Between Direct and Indirect Electric Arc Furnace

1.Direct Electric Arc Furnace

This is currently the most common and prevalent type of electric arc furnaces; the term "electric arc furnace" usually refers to this type.

EAF Working Principle: 

Typically, three (AC furnace) or one (DC furnace) graphite electrodes are vertically inserted into the sealed furnace chamber from the top. 

When energized, a strong electric arc is generated between the lower end of the electrodes and the metal charge (scrap steel, etc.), reaching temperatures exceeding 3000℃. 

This arc directly contacts the charge, rapidly melting and superheating it using its extremely high heat.

Advantages:

  • High thermal efficiency: Energy is directly transferred to the furnace charge, resulting in rapid heating and high melting efficiency.

  • High temperature: Easily reaches the temperatures required for steelmaking (>1600℃).

  • Flexible control: The molten pool temperature and chemical reactions can be precisely controlled by adjusting the electrode position and current.

  • Large scale: Modern direct arc furnaces can have capacities of hundreds of tons, making them ideal for large-scale production.


Disadvantages:

  • Significant impact on the power grid: Huge current fluctuations and harmonics are generated during arc start-up and melting.

  • High noise: The electric arc generates significant noise.

  • Electrode consumption: Graphite electrodes oxidize and are consumed at high temperatures, representing a major cost factor.


Applications:

The vast majority of electric arc furnace steelmaking uses direct arc furnaces. It is the core equipment in short-process steelmaking (using scrap steel as the main raw material) and, along with long-process steelmaking (blast furnace-converter) using molten iron, forms the world's two major steelmaking processes.


2. Indirect Arc Furnace

This is a relatively old type of electric furnace, now rarely used in large-scale steel production, but still has applications in specific fields. 

AC EAF Working Principle: 

Typically, two horizontally placed electrodes extend from the side of the furnace. When energized, an electric arc is generated between the tips of the two electrodes, suspended above the charge. The charge is not part of the circuit; instead, it is indirectly heated and melted through the radiant heat of the electric arc and the reflected heat from the heated furnace top and walls.


Advantages:

  • Calm Melt Pool: Without a powerful electric arc directly impacting the molten pool, there is less turbulence in the molten metal, resulting in relatively less element loss.

  • Suitable for Certain Alloys: Indirect heating may be more advantageous for melting easily oxidized metals (such as certain copper and aluminum alloys).


Disadvantages:

  • Extremely Low Thermal Efficiency: Heat must first heat the furnace space and lining before being transferred to the charge, resulting in significant energy loss and high energy consumption.

  • Slow Heating Rate: Due to radiative heat transfer, the melting rate is much lower than that of a direct arc furnace.

  • Severe Furnace Lining Damage: The electric arc directly bakes the furnace top and walls, leading to a short furnace lining life.

  • Small scale: Limited by heating efficiency, it's difficult to manufacture large-capacity furnaces.


Applications: 

  • Indirect EAF are currently mainly found in small foundries, used for melting non-ferrous metals (such as copper, copper alloys, aluminum alloys, etc.) or for heat preservation of cast iron. 

  • In the steel industry, it has been replaced by more efficient medium-frequency induction furnaces.


In summary, direct electric arc furnace, due to their high efficiency, large capacity, and excellent temperature control, have become the undisputed king of modern electric arc furnaces steelmaking. 

Indirect electric arc furnace, due to their inherent low efficiency, have been largely phased out in mainstream metallurgical industries, remaining only in specific niche areas.


Latest Products

Customized metallurgical machinery and equipment range: Electric Arc Furnace, Submerged Arc Furnace, LF Refining Furnace, Vacuum Furnace, Induction Furnace, Dust Remove System, Water Treatment Equipment, etc. Providing the most advanced equipment integration services, metallurgical equipment can be customized according to different needs of customers, and production capacity can be adjusted according to customer requirements.

Electric Arc Furnace

Submerged Arc Furnace

LF Refining Furnace

VD / VOD Vacuum Refining Furnace

Induction Furnace

Furnace Accessories

5 Ton Electric Arc Furnace

5 Ton Electric Arc Furnace

The 5 ton electric arc furnace for steel-making is a special purpose equipment that makes ordinary steel, quality carbon steel, alloy steel and non-corrosive steel with electric arc as heat source and scrap steel (iron) as raw material.

15 Ton Electric Arc Furnace

15 Ton Electric Arc Furnace

15-ton electric arc furnace is used for the short-process steelmaking process, using 100% scrap steel or scrap steel + molten iron (pig iron), or scrap steel + sponge iron (DRI) as raw materials for steelmaking.

30 Ton AC Electric Arc Furnace

30 Ton AC Electric Arc Furnace

The 30-ton AC electric arc furnace is used to melt scrap steel to produce steel. Electrical energy is used to melt scrap steel. An arc forms between the charged material and the electrode.

30 Ton Electric Arc Furnace

30 Ton Electric Arc Furnace

30 Ton electric arc furnace is used for steelmaking short process smelting, using 100% scrap steel or scrap steel + molten iron (pig iron), or scrap steel + sponge iron (DRI) as raw materials for steelmaking.

50 Ton Ultra-high Power Electric Arc Furnace

50 Ton Ultra-high Power Electric Arc Furnace

The 50-ton ultra-high power electric arc furnace (50TUPH EAF) adopts ultra-high power, high impedance technology, bottom tapping technology (ETB), furnace wall oxygen oil burner and furnace door carbon-oxygen gun technology.

DC Electric Arc Furnace

DC Electric Arc Furnace

DC electric arc furnace is an electric arc furnace supplying electric energy with DC power supply. There is only one electrode on the top of the DC arc furnace, which is the negative electrode, and the bottom electrode is the positive electrode.

Electric Arc Furnace

Electric Arc Furnace

Electric arc furnaces are used to melt scrap steel for steel production. Electrical energy is used to melt scrap steel. An arc forms between the charged material and the electrode. The heat generated by the arc melts the scrap.

Electric Arc Furnace Steel Making

Electric Arc Furnace Steel Making

Electric arc furnace steel making is a steelmaking method that uses the thermal effect of electric arc to heat the charge for melting.

Ultra-high Power Electric Arc Furnace

Ultra-high Power Electric Arc Furnace

Ultra-high power electric arc furnace mainly changes the arc characteristics of high voltage and long arc to the arc characteristics of high current, low voltage and short arc

1 Ton Electric Arc Furnace

1 Ton Electric Arc Furnace

1 ton electric arc furnace is used for melting steel and titanium scrap metal. The principle of electric arc furnace is based on the generation of direct current, which converts electrical energy into heat energy through electrodes to melt the metal.

2×36000KVA Closed Pig Iron Submerged Arc Furnace

2×36000KVA Closed Pig Iron Submerged Arc Furnace

The closed pig iron furnace (submerged arc furnace iron making) is a non-blast furnace iron making method. Under the premise of guaranteeing the power supply, it is easy to solve the problem by using the reducing agent required by the submerged arc furnace iron making.

Ferroalloy Refining Furnace

Ferroalloy Refining Furnace

The main mechanical device design of Sanui ferroalloy refining furnace combines China's national conditions and draws on international advanced technologies such as Demark and Pyremate.

25.5MVA Ferronickel Submerged Arc Furnace

25.5MVA Ferronickel Submerged Arc Furnace

The Ferronickel submerged arc furnace is a special submerged arc furnace used for smelting nickel-iron alloy. Its main function is to add nickel ore, carbonaceous reducing agent (such as coke) and limestone and other raw materials into the furnace in a certain proportion

Ferrosilicon Furnace

Ferrosilicon Furnace

The main mechanical device design of Sanui ferrosilicon furnace combines China's national conditions and draws on international advanced technologies such as Demark and Pyremate.

High Carbon Ferrochrome Furnace

High Carbon Ferrochrome Furnace

The main mechanical device design of Sanui high carbon ferrochrome furnace combines China's national conditions and draws on international advanced technologies such as Demark and Pyremate.

25500KVA Industrial Silicon Submerged Arc Melting Furnace

25500KVA Industrial Silicon Submerged Arc Melting Furnace

Industrial silicon submerged arc furnace is an important equipment in silicon ore processing, playing a key role in the silicon industry.

Manganese Silicon Alloy Furnace

Manganese Silicon Alloy Furnace

The manganese silicon alloy furnace is mainly used to smelt silicon-manganese alloy, which is an alloy containing silicon and manganese.

Submerged Arc Furnace

Submerged Arc Furnace

The design of the submerged arc furnace main mechanical device by Sanui is based on China's national conditions and draws on international advanced technologies such as Demark and Perlmutter.

Submerged Electric Arc Furnace

Submerged Electric Arc Furnace

Submerged electric arc furnace is mainly used for reducing and smelting raw materials such as ore, carbonaceous reducing agent and solvent. It mainly produces ferroalloys such as ferrosilicon, ferromanganese, ferrochrome, ferrotungsten, silicon-manganese alloy, etc.

Titanium Slag Furnace

Titanium Slag Furnace

Titanium slag production adopts titanium slag electric furnace (circular furnace and rectangular furnace according to its shape) smelting process.

LF 20T Ladle Refining Furnace

LF 20T Ladle Refining Furnace

The LF 20 T ladle refining furnace has the functions of arc heating under normal pressure, argon blowing and stirring at the bottom of the ladle, and reducing slag making in the ladle.

LF Ladle Refining Furnace

LF Ladle Refining Furnace

LF ladle refining furnace is a bottom-blown argon ladle furnace with three-phase submerged arc heating under normal pressure. It is a device for refining molten steel in a ladle.

VD Vacuum Refining Furnace

VD Vacuum Refining Furnace

VD vacuum refining furnace is a commonly used refining process equipment, mainly used for deoxidation, impurity removal and other operations of molten steel, so as to obtain high purity, low impurity content of high quality steel.

VOD Vacuum Refining Furnace

VOD Vacuum Refining Furnace

VOD vacuum refining furnace has multiple functions such as vacuum degassing, oxygen blowing decarburization, vacuum charging, argon blowing stirring, non-vacuum temperature measurement sampling, wire feeding, etc.

Cast Steel Melting Induction Furnace

Cast Steel Melting Induction Furnace

The cast steel melting induction furnace has outstanding advantages in heat penetration or melting soft magnetic alloys, high resistance alloys, platinum group alloys, heat-resistant, corrosion-resistant, wear-resistant alloys and pure metals.

Metal Silicon Smelting Furnace

Metal Silicon Smelting Furnace

Metal silicon smelting furnace is a metal silicon medium frequency melting furnace, which consists of furnace body, water and electricity introduction system, furnace tilting device, etc. It has fast melting temperature rise, easy to control furnace temperature and high production efficiency.

Medium Frequency Induction Furnace

Medium Frequency Induction Furnace

Medium frequency induction furnace mainly used for melting steel, alloy steel, special steel, stainless steel, and can also be used for melting and casting non-ferrous metals such as copper, aluminum, lead, zinc, etc. The customized range of induction furnaces sold by Sanrui ranges from 0.1 tons to 10 tons.

Medium Frequency Furnace

Medium Frequency Furnace

Medium frequency induction furnaces are mainly used for melting steel, alloy steel, special steel, stainless steel, and can also be used for melting and casting non-ferrous metals such as copper, aluminum, lead, and zinc.

Medium Frequency Aluminum Melting Furnace

Medium Frequency Aluminum Melting Furnace

Medium frequency aluminum melting furnace is used for melting and heating aluminum, scrap aluminum, aluminum ingots, and aluminum alloys; The melting capacity ranges from 100KG to 3000KG.

Induction Furnace

Induction Furnace

An induction furnace is an electric furnace that uses the induction electrothermal effect of the material to heat or melt the material. The main components of an induction furnace are sensors, furnace body, power supply, capacitors and control system.

3 Tons Medium Frequency Coreless Induction Furnace

3 Tons Medium Frequency Coreless Induction Furnace

​The 3-ton medium frequency coreless induction furnace adopts a 6-phase 12-pulse double rectifier control system. A 2000KVA special rectifier transformer is used for the 2000KW medium frequency power supply.

Conductive Cross Arm

Conductive Cross Arm

The conductive arm of an electric arc furnace (EAF) is primarily composed of the front electrode conductive arm holder, a water-cooled clamping ring, the arm body, and the rear conductive copper plate.

EAF Charging Basket

EAF Charging Basket

The scrap charging basket of the electric arc furnace is mainly used for loading and conveying raw materials such as scrap steel into the electric arc furnace for smelting.

EAF Electrode Holder

EAF Electrode Holder

There are many insulation links between the EAF electrode holder and the conductive cross arm body, which greatly simplifies the cconductive cross arm structure and is a new type of electrode arm on the ultra-high power arc furnace.

EAF Water Cooled Roof

EAF Water Cooled Roof

Generally, the furnace cover of the electric arc furnace adopts the tubular water-cooled closed tube furnace cover structure.

Electrode Lifting Device

Electrode Lifting Device

The electrode lifting mechanism of electric arc furnace is composed of conductive cross arm and electrode column device.

Forged Copper Tile

Forged Copper Tile

Forged copper tile is one of the main accessories in submerged arc furnace (silicon metal furnace, calcium carbide furnace and iron alloy furnace). It generates heat energy due to passing through large current at high temperature, and is easy to be damaged due to poor working environment.

Furnace Cover Lifting and Rotating Device

Furnace Cover Lifting and Rotating Device

The furnace cover lifting and rotating device consists of a furnace cover lifting mechanism, a rotating mechanism and a rotating frame.

Submerged Arc Furnace Pressure Ring

Submerged Arc Furnace Pressure Ring

Submerged arc furnace pressure ring is used to monitor the change of air pressure in the furnace in real time, and adjust the air pressure automatically or manually according to the preset parameters to ensure the stability of air pressure in the furnace

Submerged Arc Furnace Water-cooled Roof

Submerged Arc Furnace Water-cooled Roof

Submerged arc furnace water-cooled Roof is an important part of submerged arc furnace (also known as electric arc furnace, calcium carbide furnace or mining furnace), which is mainly used to close the top of furnace body and bear the high temperature and pressure in the furnace.

Short Network

Short Network

Short network bus systems), also known as high current line, refers to the general term of the carrier fluid from the secondary outlet terminal of the transformer to the electrode (including the electrode).

Contact Us

E-mail: anna@srfurnace.com

Tel: +86 159 2955 5868

WhatsApp: +86 159 2955 5868

Add:
Room 422, 4th Floor, Building D, No. 5, Phase I, Fengdong Free Trade Industrial Park, Xixian New District, Shaanxi Province

Get In Touch

Copyright © Xi'an Sanrui Electric Furnace Co., Ltd. All Rights Reserved | Sitemap | Powered by Reanod