Energy Efficiency of Electric Arc Furnace Steelmaking

Sep. 01, 2025

Electric Arc Furnace


Energy Efficiency of Electric Arc Furnace Steelmaking


As a key process in modern steel production, the energy efficiency of electric arc furnace steelmaking directly impacts production costs and environmental benefits. Against the backdrop of the steel industry facing the dual challenges of resource constraints and a low-carbon transition, improving the energy efficiency of electric arc furnace steelmaking has become a key area for technological upgrading. The following discusses the technical principles, optimization measures, practical cases, and development trends.


Electric arc furnace steelmaking uses graphite electrodes to generate a high-temperature arc to melt scrap steel. Its energy consumption consists of three components: electrical energy, chemical energy, and physical heat. Of the total energy input of a typical electric arc furnace, electrical energy accounts for approximately 60%-70%. Chemical energy comes from heat released by oxidation reactions within the furnace, while physical heat is derived from parameters such as the scrap preheating temperature. Energy efficiency is typically measured in kWh/ton of steel. Internationally advanced standards can reach 300-350 kWh/ton, while most domestic companies still struggle with a range of 380-450 kWh/ton, leaving significant room for improvement.


Improving electric arc furnace energy efficiency requires the comprehensive application of multi-faceted technical approaches. During raw material pretreatment, implementing scrap sorting, screening, and cleaning can increase metal yield by 3%-5% and effectively reduce energy consumption for impurity removal during the smelting process. Scrap preheating technology, which uses electromagnetic induction or gas heating to raise the incoming material temperature to over 600°C, can reduce electricity consumption by 15%-20%. A European steel mill has achieved a technological breakthrough by using a vertical scrap preheating system, combined with flue gas waste heat recovery, to reduce electricity consumption per ton of steel to 330 kWh. Regarding power supply system optimization, dynamic adjustment of electrode position and current intensity, combined with an intelligent control system to match the melt pool impedance in real time, can increase energy utilization by 8%-12%.


A major domestic steel mill's transformation demonstrates the significant improvement in energy efficiency achieved through equipment upgrades and process optimization. The company invested in a fully enclosed scrap pretreatment center equipped with infrared sorting and crushing equipment, reducing the raw material impurity rate from 4.2% to 1.8%. The accompanying installation of a fourth-generation electromagnetic stirring system enhanced melt pool heat transfer efficiency and shortened the smelting cycle by 12 minutes. The introduction of a neural network-based energy management and control platform enables dynamic adaptation of power supply parameters to raw material conditions, resulting in an 18% reduction in annual power consumption, reaching an industry benchmark of 365 kWh per ton of steel.


Intelligent control is a new direction for improving energy efficiency. A German factory developed an electric arc furnace digital twin system. By collecting real-time data from over 2,000 sensors to build a virtual melt pool model, it can predict energy demand fluctuations 15 minutes in advance and dynamically adjust power supply strategies. This system controls power fluctuations to within ±5%, improving overall energy efficiency by 7.3%. An intelligent electrode control system developed by a domestic research institute uses machine vision to monitor arc morphology and combines fuzzy control algorithms to optimize electrode raising and lowering frequency, successfully reducing electrode consumption by 0.8 kg/ton.


The innovative application of waste heat recovery technology has brought significant benefits. A Japanese steel plant installed a waste heat boiler at the end of its flue gas purification system, converting 800°C flue gas into steam for power generation, generating annual revenue of 12 million yuan. A domestic company is piloting an organic Rankine cycle power generation system, utilizing waste heat from temperatures between 200 and 300°C to generate electricity. The system generates 18 million kWh of electricity annually, equivalent to saving 7,200 tons of standard coal. The widespread application of these technologies is gradually bringing the energy consumption of electric arc furnace processes closer to their theoretical limits.


Green energy integration is becoming a future trend. Sweden's HYBRIT project is testing hydrogen as an auxiliary fuel, replacing natural gas. During the pilot phase, it achieved a 35% reduction in CO2 emissions. An Austrian steel mill is integrating rooftop photovoltaic power generation with electric arc furnace operations, with photovoltaic power accounting for 18% of its total power, creating a new model for the deep integration of clean energy and steel production. These explorations provide technical support for the industry's low-carbon transition.


Improving the energy efficiency of electric arc furnace steelmaking is a systematic project, involving collaborative innovation across multiple aspects, including raw material management, equipment upgrades, intelligent control, and waste heat utilization. With the in-depth integration of digital technologies such as the Internet of Things and big data, and the continued increase in the use of clean energy, electric arc furnace processes will continue to evolve towards greater efficiency and cleaner production. This not only concerns the economic benefits of enterprises, but is also the only way for the steel industry to achieve its carbon neutrality goals. It requires all parties in industry, academia and research to strengthen collaboration and jointly promote technological innovation and industrial upgrading.


Latest Products

Customized metallurgical machinery and equipment range: Electric Arc Furnace, Submerged Arc Furnace, LF Refining Furnace, Vacuum Furnace, Induction Furnace, Dust Remove System, Water Treatment Equipment, etc. Providing the most advanced equipment integration services, metallurgical equipment can be customized according to different needs of customers, and production capacity can be adjusted according to customer requirements.

Electric Arc Furnace

Submerged Arc Furnace

LF Refining Furnace

VD / VOD Vacuum Refining Furnace

Induction Furnace

Furnace Accessories

5 Ton Electric Arc Furnace

5 Ton Electric Arc Furnace

The 5 ton electric arc furnace for steel-making is a special purpose equipment that makes ordinary steel, quality carbon steel, alloy steel and non-corrosive steel with electric arc as heat source and scrap steel (iron) as raw material.

15 Ton Electric Arc Furnace

15 Ton Electric Arc Furnace

15-ton electric arc furnace is used for the short-process steelmaking process, using 100% scrap steel or scrap steel + molten iron (pig iron), or scrap steel + sponge iron (DRI) as raw materials for steelmaking.

30 Ton AC Electric Arc Furnace

30 Ton AC Electric Arc Furnace

The 30-ton AC electric arc furnace is used to melt scrap steel to produce steel. Electrical energy is used to melt scrap steel. An arc forms between the charged material and the electrode.

30 Ton Electric Arc Furnace

30 Ton Electric Arc Furnace

30 Ton electric arc furnace is used for steelmaking short process smelting, using 100% scrap steel or scrap steel + molten iron (pig iron), or scrap steel + sponge iron (DRI) as raw materials for steelmaking.

50 Ton Ultra-high Power Electric Arc Furnace

50 Ton Ultra-high Power Electric Arc Furnace

The 50-ton ultra-high power electric arc furnace (50TUPH EAF) adopts ultra-high power, high impedance technology, bottom tapping technology (ETB), furnace wall oxygen oil burner and furnace door carbon-oxygen gun technology.

DC Electric Arc Furnace

DC Electric Arc Furnace

DC electric arc furnace is an electric arc furnace supplying electric energy with DC power supply. There is only one electrode on the top of the DC arc furnace, which is the negative electrode, and the bottom electrode is the positive electrode.

Electric Arc Furnace

Electric Arc Furnace

Electric arc furnaces are used to melt scrap steel for steel production. Electrical energy is used to melt scrap steel. An arc forms between the charged material and the electrode. The heat generated by the arc melts the scrap.

Electric Arc Furnace Steel Making

Electric Arc Furnace Steel Making

Electric arc furnace steel making is a steelmaking method that uses the thermal effect of electric arc to heat the charge for melting.

Ultra-high Power Electric Arc Furnace

Ultra-high Power Electric Arc Furnace

Ultra-high power electric arc furnace mainly changes the arc characteristics of high voltage and long arc to the arc characteristics of high current, low voltage and short arc

1 Ton Electric Arc Furnace

1 Ton Electric Arc Furnace

1 ton electric arc furnace is used for melting steel and titanium scrap metal. The principle of electric arc furnace is based on the generation of direct current, which converts electrical energy into heat energy through electrodes to melt the metal.

2×36000KVA Closed Pig Iron Submerged Arc Furnace

2×36000KVA Closed Pig Iron Submerged Arc Furnace

The closed pig iron furnace (submerged arc furnace iron making) is a non-blast furnace iron making method. Under the premise of guaranteeing the power supply, it is easy to solve the problem by using the reducing agent required by the submerged arc furnace iron making.

Ferroalloy Refining Furnace

Ferroalloy Refining Furnace

The main mechanical device design of Sanui ferroalloy refining furnace combines China's national conditions and draws on international advanced technologies such as Demark and Pyremate.

25.5MVA Ferronickel Submerged Arc Furnace

25.5MVA Ferronickel Submerged Arc Furnace

The Ferronickel submerged arc furnace is a special submerged arc furnace used for smelting nickel-iron alloy. Its main function is to add nickel ore, carbonaceous reducing agent (such as coke) and limestone and other raw materials into the furnace in a certain proportion

Ferrosilicon Furnace

Ferrosilicon Furnace

The main mechanical device design of Sanui ferrosilicon furnace combines China's national conditions and draws on international advanced technologies such as Demark and Pyremate.

High Carbon Ferrochrome Furnace

High Carbon Ferrochrome Furnace

The main mechanical device design of Sanui high carbon ferrochrome furnace combines China's national conditions and draws on international advanced technologies such as Demark and Pyremate.

25500KVA Industrial Silicon Submerged Arc Melting Furnace

25500KVA Industrial Silicon Submerged Arc Melting Furnace

Industrial silicon submerged arc furnace is an important equipment in silicon ore processing, playing a key role in the silicon industry.

Manganese Silicon Alloy Furnace

Manganese Silicon Alloy Furnace

The manganese silicon alloy furnace is mainly used to smelt silicon-manganese alloy, which is an alloy containing silicon and manganese.

Submerged Arc Furnace

Submerged Arc Furnace

The design of the submerged arc furnace main mechanical device by Sanui is based on China's national conditions and draws on international advanced technologies such as Demark and Perlmutter.

Submerged Electric Arc Furnace

Submerged Electric Arc Furnace

Submerged electric arc furnace is mainly used for reducing and smelting raw materials such as ore, carbonaceous reducing agent and solvent. It mainly produces ferroalloys such as ferrosilicon, ferromanganese, ferrochrome, ferrotungsten, silicon-manganese alloy, etc.

Titanium Slag Furnace

Titanium Slag Furnace

Titanium slag production adopts titanium slag electric furnace (circular furnace and rectangular furnace according to its shape) smelting process.

LF 20T Ladle Refining Furnace

LF 20T Ladle Refining Furnace

The LF 20 T ladle refining furnace has the functions of arc heating under normal pressure, argon blowing and stirring at the bottom of the ladle, and reducing slag making in the ladle.

LF Ladle Refining Furnace

LF Ladle Refining Furnace

LF ladle refining furnace is a bottom-blown argon ladle furnace with three-phase submerged arc heating under normal pressure. It is a device for refining molten steel in a ladle.

VD Vacuum Refining Furnace

VD Vacuum Refining Furnace

VD vacuum refining furnace is a commonly used refining process equipment, mainly used for deoxidation, impurity removal and other operations of molten steel, so as to obtain high purity, low impurity content of high quality steel.

VOD Vacuum Refining Furnace

VOD Vacuum Refining Furnace

VOD vacuum refining furnace has multiple functions such as vacuum degassing, oxygen blowing decarburization, vacuum charging, argon blowing stirring, non-vacuum temperature measurement sampling, wire feeding, etc.

Cast Steel Melting Induction Furnace

Cast Steel Melting Induction Furnace

The cast steel melting induction furnace has outstanding advantages in heat penetration or melting soft magnetic alloys, high resistance alloys, platinum group alloys, heat-resistant, corrosion-resistant, wear-resistant alloys and pure metals.

Metal Silicon Smelting Furnace

Metal Silicon Smelting Furnace

Metal silicon smelting furnace is a metal silicon medium frequency melting furnace, which consists of furnace body, water and electricity introduction system, furnace tilting device, etc. It has fast melting temperature rise, easy to control furnace temperature and high production efficiency.

Medium Frequency Induction Furnace

Medium Frequency Induction Furnace

Medium frequency induction furnace mainly used for melting steel, alloy steel, special steel, stainless steel, and can also be used for melting and casting non-ferrous metals such as copper, aluminum, lead, zinc, etc. The customized range of induction furnaces sold by Sanrui ranges from 0.1 tons to 10 tons.

Medium Frequency Furnace

Medium Frequency Furnace

Medium frequency induction furnaces are mainly used for melting steel, alloy steel, special steel, stainless steel, and can also be used for melting and casting non-ferrous metals such as copper, aluminum, lead, and zinc.

Medium Frequency Aluminum Melting Furnace

Medium Frequency Aluminum Melting Furnace

Medium frequency aluminum melting furnace is used for melting and heating aluminum, scrap aluminum, aluminum ingots, and aluminum alloys; The melting capacity ranges from 100KG to 3000KG.

Induction Furnace

Induction Furnace

An induction furnace is an electric furnace that uses the induction electrothermal effect of the material to heat or melt the material. The main components of an induction furnace are sensors, furnace body, power supply, capacitors and control system.

3 Tons Medium Frequency Coreless Induction Furnace

3 Tons Medium Frequency Coreless Induction Furnace

​The 3-ton medium frequency coreless induction furnace adopts a 6-phase 12-pulse double rectifier control system. A 2000KVA special rectifier transformer is used for the 2000KW medium frequency power supply.

Conductive Cross Arm

Conductive Cross Arm

The conductive arm of an electric arc furnace (EAF) is primarily composed of the front electrode conductive arm holder, a water-cooled clamping ring, the arm body, and the rear conductive copper plate.

EAF Charging Basket

EAF Charging Basket

The scrap charging basket of the electric arc furnace is mainly used for loading and conveying raw materials such as scrap steel into the electric arc furnace for smelting.

EAF Electrode Holder

EAF Electrode Holder

There are many insulation links between the EAF electrode holder and the conductive cross arm body, which greatly simplifies the cconductive cross arm structure and is a new type of electrode arm on the ultra-high power arc furnace.

EAF Water Cooled Roof

EAF Water Cooled Roof

Generally, the furnace cover of the electric arc furnace adopts the tubular water-cooled closed tube furnace cover structure.

Electrode Lifting Device

Electrode Lifting Device

The electrode lifting mechanism of electric arc furnace is composed of conductive cross arm and electrode column device.

Forged Copper Tile

Forged Copper Tile

Forged copper tile is one of the main accessories in submerged arc furnace (silicon metal furnace, calcium carbide furnace and iron alloy furnace). It generates heat energy due to passing through large current at high temperature, and is easy to be damaged due to poor working environment.

Furnace Cover Lifting and Rotating Device

Furnace Cover Lifting and Rotating Device

The furnace cover lifting and rotating device consists of a furnace cover lifting mechanism, a rotating mechanism and a rotating frame.

Submerged Arc Furnace Pressure Ring

Submerged Arc Furnace Pressure Ring

Submerged arc furnace pressure ring is used to monitor the change of air pressure in the furnace in real time, and adjust the air pressure automatically or manually according to the preset parameters to ensure the stability of air pressure in the furnace

Submerged Arc Furnace Water-cooled Roof

Submerged Arc Furnace Water-cooled Roof

Submerged arc furnace water-cooled Roof is an important part of submerged arc furnace (also known as electric arc furnace, calcium carbide furnace or mining furnace), which is mainly used to close the top of furnace body and bear the high temperature and pressure in the furnace.

Short Network

Short Network

Short network bus systems), also known as high current line, refers to the general term of the carrier fluid from the secondary outlet terminal of the transformer to the electrode (including the electrode).

Contact Us

E-mail: anna@srfurnace.com

Tel: +86 159 2955 5868

WhatsApp: +86 159 2955 5868

Add:
Room 102, Building 7A, Free Trade Xintiandi, Fengdong Avenue, Fengdong New Town, Xi'an City, Shaanxi Province

Get In Touch

Copyright © Xi'an Sanrui Electric Furnace Co., Ltd. All Rights Reserved | Sitemap | Powered by Reanod